
Speeding up multi-physics simulations

through reuse of multigrid components

Andrey Prokopenko

Paul Lin

John Shadid

Jonathan Hu

Sandia National Labs

March 24, 2016

SAND2016-2612 C

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly

owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security

Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXP

Andrey Prokopenko Reuse of multigrid components Copper 2016 1 / 20



Motivation

Multigrid setup times growing with number of MPI ranks

Many simulations only change the values of a matrix, not the structure

Workaround for scalability issues

Andrey Prokopenko Reuse of multigrid components Copper 2016 2 / 20



Motivation

Multigrid setup times growing with number of MPI ranks

Many simulations only change the values of a matrix, not the structure

Workaround for scalability issues

Few years ago...

MPI ranks DOFs AMG setup time (s)

128 0.8M 9.5

1024 6.5M 10.8

8192 51.0M 12.1

65536 401M 25.5

524288 3.2B 1312

Andrey Prokopenko Reuse of multigrid components Copper 2016 2 / 20



Algebraic Multigrid (AMG)

Spost
1

Spost
0

Spre
1

Spre
0

S2

A0

A1

A2

Main idea

Capture errors at multiple resolutions.

Andrey Prokopenko Reuse of multigrid components Copper 2016 3 / 20



Algebraic Multigrid (AMG)

Spost
1

Spost
0

Spre
1

Spre
0

S2

A0

A1

A2

Two main components

Smoothers

Approximate solve on each level

‘‘Cheap’’ reduction of oscillatory error

(high energy)

SL ≈ A−1
L on the coarsest level L

Grid transfers (prolongators and restrictors)

Main idea

Capture errors at multiple resolutions.

Andrey Prokopenko Reuse of multigrid components Copper 2016 3 / 20



Algebraic Multigrid (AMG)

P2R2

P1R1

A` = R`A`−1P`

Spost
1

Spost
0

Spre
1

Spre
0

S2

A0

A1

A2

Two main components

Smoothers

Approximate solve on each level

‘‘Cheap’’ reduction of oscillatory error

(high energy)

SL ≈ A−1
L on the coarsest level L

Grid transfers (prolongators and restrictors)

Data movement between levels

Reduction of smooth error (low energy)

Main idea

Capture errors at multiple resolutions.

Andrey Prokopenko Reuse of multigrid components Copper 2016 3 / 20



MueLu: Trilinos multigrid library

Can use either Epetra (32-bit) or Tpetra
Template types: Local and global indices, scalar, compute node

Grid transfers

Smoothed and unsmoothed aggregation

Petrov-Galerkin

Energy minimization

Maxwell

Smoothers (Ifpack/Ifpack2)
Relaxation: Jacobi, SOR, l1 Gauss-Seidel

Incomplete factorizations: ILU(k), ILUT, ILUTP*

Others: Chebyshev, additive Schwarz, Krylov, Vanka, . . .

Direct solvers (Amesos/Amesos2)
KLU2, SuperLU, . . .

Load balancing (Zoltan/Zoltan2)
RCB, multijagged (Zoltan2 only)

Andrey Prokopenko Reuse of multigrid components Copper 2016 4 / 20



MueLu: factory concept

Data processing

Factory represents a computational kernel

Factory knows what input is needed to produce its

output

Factory requests one or more input variables

Factory builds one or more output variables

Data storage

All input and output data is (temporarily) stored in

data container classes

Each level has data container

Data dependencies are automatically handled by

MueLu

Factory
Process input data A and

produce output data B

A

B

Andrey Prokopenko Reuse of multigrid components Copper 2016 5 / 20



MueLu: managing data and factories

Keeping track of all generated data and inter-factory dependencies is tricky

FactoryManager provides an automatic way for a factory to get its

required input data

Provides default options for missing inter-factory dependencies to generate data

Checks whether the required data has already been generated, or whether it needs to

be generated

Example

User declares TentativePFactory which needs Aggregates

FactoryManager checks whether Aggregates has already been

generated

FactoryManager provides a default AggregationFactory if data

needs to be generated

Andrey Prokopenko Reuse of multigrid components Copper 2016 6 / 20



MueLu: dependencies example

A`N` P` R` S`

Aggregation factory

Form coarse unknowns
SmootherFactory

S`

Smoother factory

Construct fine level smoother

Tentative prolongator factory

Build N`+1 by local QR-

decomposition of N`

Prolongator smoothing factory

Generate P` = (I − ωA`)P
(tent)
`

Transpose factory

Generate restriction R`+1

Coarse matrix factory

A`+1 = R`+1A`P`+1

A`+1N`+1 P`+1 R`+1

R`+1

P`+1

P(tent)
`+1

P`+1

R`+1

P`+1 A`

G(A`)

A`

A`

N
`+

1

J. Gaidamour, J. J. Hu, C. M. Siefert, and R. S. Tuminaro. Design con-

siderations for a flexible multigrid preconditioning library. Scientific

Programming, 20(3), 2012.

Andrey Prokopenko Reuse of multigrid components Copper 2016 7 / 20



Smoothed Aggregation (SA) main kernels

Aggregation (forming coarse unknowns)

Tentative prolongator construction P(tent)

Smoothed prolongator construction P = (I − ωD−1A)P(tent)

Coarse matrix construction (matrix-matrix multiply) A` = RA`−1P

Load balancing of A` (if necessary)

Smoother initialization

Andrey Prokopenko Reuse of multigrid components Copper 2016 8 / 20



Reuse: fine level smoothers (S)

Reuse

Symbolic factorization of smoother S0

Recompute

Smoother S0 (faster using only numeric factorization)

Everything else...

X Useful for heavy smoothers, like ILU

X Does not affect convergence

7 Little benefit for light-weight smoothers

Andrey Prokopenko Reuse of multigrid components Copper 2016 9 / 20



Reuse: fine level smoothers (S)

Additive Schwarz/subdomain ILU

Data import infrastructure

Local symbolic factorizations

Data transfers unavoidable

Polynomial smoothers

Reuse eigenvalue estimate

Reuse initial guesses for eigenvalue estimates (reduce matvecs)

Jacobi, Gauss-Seidel, etc.

No reuse

Andrey Prokopenko Reuse of multigrid components Copper 2016 10 / 20



Reuse: tentative prolongators (TP)

Reuse

Tentative prolongators P(tent)
` , ` > 0

Matrix graphs of P` and A`, ` > 0
Symbolic factorization of smoothers S`, ` ≥ 0

Recompute

Smoothed prolongators P = (I − ωD−1A) P(tent) (faster using matrix graph reuse)

Coarse level matrices A`, ` > 0 (faster using matrix graph reuse)

Smoothers S` (faster using only numeric factorization)

X Avoids construction of tentative prolongator

X Preserves import objects for rebalancing

X Does not affect convergence

7 Requires matrix-matrix product for P and RAP

Andrey Prokopenko Reuse of multigrid components Copper 2016 11 / 20



Reuse: final prolongators (RP)

Reuse

Prolongators/restrictors P`, R`, ` > 0
Matrix graphs of A`, ` > 0
Symbolic factorization of smoothers S`, ` ≥ 0

Recompute

Coarse level matrices A`, ` > 0 (faster using matrix graph reuse)

Smoothers S` (faster using only numeric factorization)

X Avoids matrix-matrix product for final P`

X Preserves import object for rebalancing A`, ` > 0
7 May negatively affect convergence

7 Requires matrix-matrix product for RAP

Andrey Prokopenko Reuse of multigrid components Copper 2016 12 / 20



Reuse: all but fine level smoother (RAP)

Reuse

Prolongators/restrictors P`, R`, ` > 0
Coarse level matrices A`, ` > 0
Smoothers S`, ` > 0
Symbolic factorization of smoothers S0

Recompute

Smoother S0 (faster using only numeric factorization)

X No matrix-matrix products required

X Preserves coarse smoother data

X Preserves rebalancing information

X Cheapest reuse option

7 Least likely to converge

Andrey Prokopenko Reuse of multigrid components Copper 2016 13 / 20



Experiments: ISMIP-HOM Test C

A ‘‘first order’’ approximation to a full Stokes model for a standard ice sheet model

benchmark ISMIP-HOM (Test C). This model is an approximation to viscous

incompressible quasi-static Stokes flow with power-law viscosity

−∇ · (2µε̇1) = −ρg ∂s
∂x

−∇ · (2µε̇2) = −ρg ∂s
∂y

where

ε̇T1 = (2ε̇11 + ε̇22, ε̇12, ε̇13)
ε̇T2 = (ε̇12, ε̇11 + 2ε̇22, ε̇23)

ε̇ĳ = 1
2

(
∂ui
∂xj

+ ∂uj

∂xi

)
and viscocsity µ is a nonlinear function given by ‘‘Glen’s law’’

µ =
1
2

A− 1
n

(
1
2

∑
ĳ

ε̇2ĳ

) 1
2n
− 1

2

The model is complimented by relevant stress-free and floating ice boundary

conditions.

The mesh for the Test C benchmark is taken to be a regular Cartesian grid of size

160× 160× 40, similar to the one depicted in Figure ??.

Andrey Prokopenko Reuse of multigrid components Copper 2016 14 / 20



Experiments: ISMIP-HOM Test C

Reuse Setup Solve

No reuse 77.2 66.7

TP 64.8 67.4

RP 42.6 67.5

RAP 22.0 84.8

Andrey Prokopenko Reuse of multigrid components Copper 2016 15 / 20



Experiments: 3D MHD generator

Steady-state 3D MHD generator

Resistive MHD model

Stabilized FE

Newton-Krylov solve

8 DOFs/mesh node

Monolithic preconditioner

Prolongator is unsmoothed

Heavy smoother

In this case, DD/ILU(0)

P cheap to construct compared to smoothers

Andrey Prokopenko Reuse of multigrid components Copper 2016 16 / 20



Experiments: 3D MHD generator

Steady-state 3D MHD generator

Resistive MHD model

Stabilized FE

Newton-Krylov solve

8 DOFs/mesh node

Monolithic preconditioner

Prolongator is unsmoothed

Heavy smoother

In this case, DD/ILU(0)

P cheap to construct compared to smoothers

Reuse Setup Solve Total

No reuse 3.79 2.65 6.44

S 3.27 2.63 5.91

RP 3.14 2.61 5.75

RAP 2.74 42.80 45.53

Andrey Prokopenko Reuse of multigrid components Copper 2016 16 / 20



Experiments: jet problem

3D Jet, Re=106, CFL 0.25, no slip BCs

SA AMG, V(3,3) symmetric Gauss-Seidel smoothing

Setup cost almost entirely

Smoothed prolongator

P = (I − ωD−1A)P(tent)

Galerkin product

For this particular problem, convergence maintained

Andrey Prokopenko Reuse of multigrid components Copper 2016 17 / 20



Experiments: jet problem

3D Jet, Re=106, CFL 0.25, no slip BCs

SA AMG, V(3,3) symmetric Gauss-Seidel smoothing

Setup cost almost entirely

Smoothed prolongator

P = (I − ωD−1A)P(tent)

Galerkin product

For this particular problem, convergence maintained

Andrey Prokopenko Reuse of multigrid components Copper 2016 17 / 20



Conclusions

Easy way of reducing multigrid setup times without changing algorithms

Multiple opportunities for reducing cost through reuse

Grid transfers

Heavy weight smoothers

Matrix-matrix multiplication

Effectiveness of reusing setup information is problem dependent

Still have some low-hanging fruit to pick

Andrey Prokopenko Reuse of multigrid components Copper 2016 18 / 20



Future work

Storing more auxilary data

Temporary communication data structures

Hash tables for matrix-matrix multiplication

Experimenting with reuse with next-gen smoothers

Multi-colored Gauss-Seidel

Iterative ILU

Ability to use different reuse strategies in Newton solver and across transient

steps

Heavy reuse within Newton solver, lighter reuse across time steps

Lighter reuse early in simulation due to startup conditions

Better information exchange between nonlinear and linear solve

Andrey Prokopenko Reuse of multigrid components Copper 2016 19 / 20



MueLu: references

A. Prokopenko, J. J. Hu, T. A. Wiesner, C. M. Siefert, and R. S. Tuminaro, MueLu

User’s Guide 1.0, 2014. SAND2014-18874, Sandia National Laboratories.

T.A. Wiesner, M.W. Gee, A. Prokopenko, and J.J. Hu, The MueLu tutorial,

http://trilinos.org/packages/muelu/muelu-tutorial, 2014. SAND2014-18624R,

Sandia National Laboratories.

P. Lin, M. Bettencourt, S. Domino, T. Fisher, M. Hoemmen, J.J. Hu, E. Phipps, A.

Prokopenko, S. Rajamanickam, C. Siefert, S. Kennon, Towards extreme-scale

simulations for low Mach fluids with second-generation Trilinos, Parallel

Processing Letters, World Scientific, 2014, 24, 1442005

Andrey Prokopenko Reuse of multigrid components Copper 2016 20 / 20


	Introduction
	Reuse
	Experiments
	Future Plans

